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Overview

Two operations, addition and scalar multiplication are defined on a set. In
the set we can add any two vectors, and we can multiply vectors by
scalars. The set becomes a vector space if eight axioms are satisfied.

The following are discussed in the notes.

Formal definition of a vector space over a field is given, with
examples.

A subspace is a subset of a vector space which is “closed” under
additon and scalar mutiplication. For a given matrix of order m × n,
two interesting subspaces (column space and null space) are defined
in Rm and Rn respectively.

Finally, a result connecting general solutions of homogeneous system
(Ax = b) and non-homogeneous system (Ax = 0), is given. The
result is helpful in writing down the general solution of the
non-homogeneous system.
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Introduction

The space Rn consists of all column vectors with n components. (The
components are real numbers.) The space R2 is represented by the usual
xy -plane; the two components of the vector become the x and y
coordinates of the corresponding point.

R3 is equally familiar, with the three components giving a point in
three-dimensional space.

The one-dimensional space R1 is a line. The valuable thing for linear
algebra is that the extension to n dimensions is so straightforward; for a
vector in seven-dimensional space R7 we just need to know the seven
components, even if the geometry is hard to visualize.

Within these spaces, and within all vector spaces, two operations are
possible: We can add any two vectors, and we can multiply vectors
by real scalars. For the spaces Rn these operations are done a component
at a time.
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General Field

A field is a set F , containing at least two elements, on which two
operations + and . (called addition and multiplication, respectively) are
defined so that for each pair of elements x , y ∈ F there are unique
elements x + y and x · y (often written xy) in F for which the following
conditions hold for all elements x , y , z ∈ F :

1. (x + y) + z = x + (y + z) (associativity of addition)

2. There is an element 0 ∈ F , called zero, such that x + 0 = x (existence of an additive
identity)

3. For each x , there is an element −x ∈ F such that x + (−x) = 0 (existence of additive
inverse)

4. x + y = y + x (commutativity of addition)

5. (xy)z = x(yz) (associativity of multiplication)

6. There is an element 1 ∈ F , such that 1 6= 0 and x1 = x (existence of a multiplicative
identity)

7. If x 6= 0, then there is an element x−1 ∈ F such that x .x−1 = 1 (existence of
multiplicative inverse)

8. xy = yx (commutativity of multiplication)

9. (x + y)z = xz + yz and x(y + z) = xy + xz (distributivity)

The elements of a field are called scalars, denoted by a, b, c , α, β etc.
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Various Fields

The set R of real numbers is a field with respect to usual addition
and multiplication.

The set C of complex numbers is a field with respect to usual
addition and multiplication.

The set Q of rational numbers is a field with respect to usual addition
and multiplication.

If p is a prime number, then the integers modulo p form a finite field
with p elements, typically denoted by Zp. That is,

Zp = {0, 1, 2, . . . , p − 1}.

The smallest field Z2 is the set of integers modulo 2 under modulo
addition and modulo multiplication. This field has 2 elements, say
{0, 1}.
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We call : V is a vector space over F

A vector space consists of a set V (elements of V are called vectors), a
field F (elements of F are called scalars), and two operations

An operation called vector addition that takes two vectors x , y ∈ V , and produces a third
vector, written x + y ∈ V .

An operation called scalar multiplication that takes a scalar α ∈ F and a vector x ∈ V ,
and produces a new vector, written αx ∈ V ,

which satisfy the following eight conditions (called axioms) :
1. (x + y) + z = x + (y + z) (associativity of +)

2. there exists an element 0 of V such that x + 0 = x for all x ∈ V (existence of an additive
identity 0)

3. for each x ∈ X , there exists an element −x in X such that x + (−x) = 0 (existence of
negative)

4. x + y = y + x (commutativity of +)

5. (α+ β)x = αx + βx (distributivity)

6. α(x + y) = αx + αy (distributivity)

7. α(βx) = (αβ)x (associativity of multiplication)

8. 1.x = x (unitarity)

We call V is a vector space over F .
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Examples

1. R is a vector space over R with usual addition and usual multiplication.

2. R is a vector space over Q with usual addition and usual multiplication.

3. C is a vector space over C with usual addition and usual multiplication.

4. C is a vector space over R with usual addition and usual multiplication.

5. C is a vector space over Q with usual addition and usual multiplication.

6. R is not a vector space over C with usual addition and usual multiplication.

Throughtout the course, we consider only real field and hence we consider
only real vector spaces, that is, vector spaces over R.

If the field of scalars is not mentioned, it is understood that it is the real
field.
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Examples of Vector Spaces

1. The space Rn consists of all column vectors with n components.

2. The space R∞ consists of all real sequences.

3. The space R3×2 of 3 by 2 real matrices is a vector space. In this case
the “vectors” are matrices! We can add two matrices, and
A + B = B + A, and there is a zero matrix, and so on. This space is
almost the same as R6. (The six components are arranged in a
rectangle instead of a column.)

4. The space Rm×n of m by n matrices is a vector space.

5. The space V of real-valued functions f defined on a fixed interval, say
0 ≤ x ≤ 1 is a vector space with the addition and scalar
multiplication defined as follows : For all f ∈ V , g ∈ V , α ∈ R,

(f + g)(x) = f (x) + g(x) for all x ∈ [0, 1]

(αf )(x) = αf (x) for all x ∈ [0, 1].
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Examples of Vector Spaces

1. The space P of all polynomials with real coefficients. That is, p ∈ P,
then p is of the form

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

for some integer n ≥ 0 and reals a0, a1, . . . , an.

2. The space Pn of all polynomials of degree at most n with real
coefficients. That is, p ∈ Pn, then p is of the form

p(x) = a0 + a1x + a2x
2 + · · ·+ anx

n

for some reals a0, a1, . . . , an.
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Exercises

Exercises 1.

1. Let V denote the set of ordered pairs of real numbers. If (x1, x2) and
(y1, y2) are elements of V and α ∈ R, define
(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and α(x1, x2) = (αx1, x2).
Is V a vector space over R with these operations? Justify your answer.

2. Let V denote the set of ordered pairs of real numbers. If (x1, x2) and
(y1, y2) are elements of V and α ∈ R, define
(x1, x2) + (y1, y2) = (x1 + y1, x2 − y2) and α(x1, x2) = (αx1, αx2).
Is V a vector space over R with these operations? Justify your answer.

3. Construct a subset of the xy -plane R2 that is

(a) closed under vector addition and subtraction, but not scalar
multiplication.

(b) closed under scalar multiplication but not under vector addition.
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Subspaces

Geometrically, think of the usual three-dimensional R3 and choose any
plane through the origin. That plane is a vector space in its own right.

If we multiply a vector in the plane by 3, or −3, or any other scalar, we get
a vector which lies in the same plane. If we add two vectors in the plane,
their sum stays in the plane.

This plane illustrates one of the most fundamental ideas in the theory of
linear algebra; it is a subspace of the original space R3.
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Subspaces

A subspace of a vector space is a nonempty subset that satisfies two
requirements:

1. If we add any vectors x and y in the subspace, their sum x + y is in
the subspace.

2. If we multiply any vector x in the subspace by any scalar α, the
multiple αx is still in the subspace.

In other words, a subspace is a subset which is “closed” under additon
and scalar mutiplication. Those operations follow the rules of the host
space, without taking us outside the subspace.

There is no need to verify the eight required properties, because they are
satisfied in the larger space and will automatically be satisfied in every
subspace. Notice in particular that the zero vector will belong to every
subspace.
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Subspaces

The most extreme posibility for a subspace is to contain only one vector,
the zero vector. It is a “zero-dimensional space,” containing only the
zero vector. This is the smallest possible vector space. Note that the
empty set is not allowed.

At the other extreme, the largest subspace is the whole of the original
space - we can allow every vector into the subspace.

If the original space is R3, then the possible subspaces are easy to
describe: R3 itself, any plane through the origin, any line through the
origin, or the origin (the zero vector) alone.
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Exercises

Exercises 2.

1. Which of the following are subspaces of R∞ ?

All sequences like (1, 0, 1, 0, . . .) that include infinitely many zeros.
All sequences (x1, x2, x3, . . .) with xj = 0 for some point onward.
All convergent sequences.
All geometric progression (x1, kx1, k

2x1, . . .) allowing all k and x1.

2. Check whether the following are subspaces (of what?)

W1 = {A5×5 : A is real and symmetric}, W2 = Set of all 5× 5 real
upper triangular matrices, W3 = Set of all 5× 5 real triangular
matrices, W4 = {A5×5 : aij ∈ R & trace(A) = 0}.
V = R3, W1 = {(a1, a2, a3) ∈ R3 : a1 = 3a2 & a3 = −a2},
W2 = {(a1, a2, a3) ∈ R3 : 5a2

1 − 3a2
2 + 6a2

3 = 0}.

P. Sam Johnson Vector Spaces (Part-1) 14/65



Smallest Subspace Containing a Set

The distinction between a subset and a subspace is made clear by
examples: Consider all vectors whose components are positive or zero. If
the original space is the xy -plane R2, then this subset is the first quadrant;
the coordinates satisfy x ≥ 0 and y ≥ 0. It is not a subspace, even though
it contains zero and addition does leave us within the subset.

If c = −1 and x = (1, 1), the multiple cx = (−1,−1) is in the third
quadrant instead of the first. If we include the third quadrant along with
the first, then scalar multiplication is all right; every mutiple cx will stay in
this subset, however the addition of (1, 2) and (−2,−1) gives a vector
(−1, 1) which is not in either quadrant.

The smallest subspace containing the first quadrant is the whole space
R2.
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Subspaces

If we start from the vector space of 3 by 3 matrices, then one possible
subspace is the set of lower triangular matrices.

Another is the set of symmetric matrices. In both cases, the sums
A + B and the multiples cA inherit the properties of A and B. They are
lower triangular if A and B are lower triangular, and they are symmetric if
A and B are symmetric.

Of course, the zero matrix is in both subspaces.

Exercise 3.

What is the smallest subspace of 3× 3 matrices that contains all
symmetric matrices and all lower triangular matrices? What is the largest
subspace that is contained in both of those subspaces?
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Column space - An Example of a Subspace

We now come to the key examples of subspaces. They are tied directly to
a m × n matrix A, and they give information about the system Ax = b.

The column space contains all linear combinations of the columns of A
and it is denoted by C (A). The system Ax = b is solvable iff the vector b
can be expressed as a combination of the columns of A. Then b is in the
column space.

Example 4.

The matrices A =

 1 0
5 4
2 2

 and B =

 1 0 1
5 4 9
2 2 4

 have the same

column spaces.
Note that the third column of B is the sum of first and second columns of
B.
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Column space is a subspace of Rm.

Suppose b and b′ lie in the column space, so that Ax = b for some x and
A′ = b′ for some x ′; x and x ′ just give the combinations which produce b
and b′.

Then A(x + x ′) = b + b′, so that b + b′ is also a combination of the
columns. The attainable vectors are closed under addition, and the first
requirement for a subspace is met.

If b is in the column space, so is any multiple cb. If some combination of
columns produces b (say Ax = b), then multiplying every coefficient in the
combination by c will produce cb. In other words, A(cx) = cb.

The smallest possible column space comes from the zero matrix A = 0.
The only vector in its column space (the only combination of the columns)
is b = 0, and no other choice of b allows us to solve 0x = b.

P. Sam Johnson Vector Spaces (Part-1) 18/65



Example

Let A =

 1 0
5 4
2 4

. A restatement of the system Ax = b is written as

follows : u

 1
5
2

 + v

 0
4
4

 =

 b1

b2

b3

 .

The subset of attainable right-hand sides b is the set of all combinations
of the columns of A.

One possible right side is the first column itself; the weights are u = 1 and
v = 0.

Another possiblity is the second column: u = 0 and v = 1. A third is the
right side b = 0; the weights are u = 0, v = 0 (and with that trivial choice,
the vector b = 0 will be attainable no matter what the matrix is).
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Column Space is Full

At the other extreme, suppose A is the 5 by 5 identity matrix. Then the
column space is the whole of R5; the five columns of the identity matrix
can combine to produce any five-dimensional vector b.

This is not at all special to the identity matrix.

Any 5 by 5 matrix which is nonsingular will have the whole of R5 as its
column space. For such a matrix we can solve Ax = b by Gaussian
elimination; there are five pivots.

Therefore every b is in the column space of a nonsingular matrix.

For what value of b, is the system Ax = b solvable?

The equation Ax = b can be solved iff b lies in the column space of A.
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Nullspace of A

The second approach to Ax = b is “dual” to the first. We are concerned
not only with which right sides b are attainable, but also with the set of
solutions x that attain them.

The right side b = 0 always allows the particular solution x = 0, but there
may be infinitely many other solutions. (There always are, if there are
more unknowns than equations, n > m.)

The set of solutions to Ax = 0 is itself a vector space - the nullspace of A.

P. Sam Johnson Vector Spaces (Part-1) 21/65



Nullspace : Another Example of a Subspace

The nullspace of a matrix consists of all vectors x such that Ax = 0
(i.e., the set of solutions to Ax = 0). It is denoted by N(A).

If Ax = 0 and Ay = 0, then A(x + y) = 0.

If Ax = 0, then A(cx) = 0.

As both requirement are satisfied, N(A) is a subspace of Rn.

Note that both requirements fail if the right-hand side is not zero!
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The solution of m equations in n unknowns.

The elimination process is by now very familiar for square matrices. The
elimination for rectangular matrices goes forward without major changes,
but when it comes to reading off the solution by back-substitution, there
are some differences.

Consider the simple 1× 1 system ax = b, one equation and one unknown.
It might be 3x = 4 or 0x = 0 or 0x = 4. There are three possibilities :

1. Suppose a 6= 0. The system has unique solution b/a. This is the nonsingular case (of a 1
by 1 invertible matrix a).

2. Suppse a = 0 but b 6= 0. Then 0x = b has no solution. The column space of 1× 1 zero
matrix contains only b = 0. This is the inconsistent case.

3. Suppse both a and b are zero. Then the system 0x = 0 has infinitely many solutions.
Any x satisfies 0x = 0. This is the underdetermined case; a solution exists, but it is not
unique.
The nullspace contains all x . A particular solution is xp = 0, and the complete solution
is xp + (any x) = 0 + (any x).
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The solution of m equations in n unknowns.

For square matrices all these alternatives may occur. We will replace
“a 6= 0” by “A is invertible,” but it still means that A−1 makes sense.

With a rectangular matrix possiblity (a) disappears; we cannot have
existence and also uniqueness, one solution x for every b.

There may be infinitely many solutions for every b; or infinitely many for
some b and no solution for others; or one solution for some b and none for
others.
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Exercises

Exercises 5.
1. Which of the following subsets of R3 are actually subspaces?

(a) The plane of vectors (b1, b2, b3) with first component b1 = 0.
(b) The plane of vectors b with b1 = 1.
(c) The vectors b with b2b3 = 0 (this is the union of two subspaces, the

plane b2 = 0 and the plane b3 = 0).
(d) All combinations of two given vectors (1, 1, 0) and (2, 0, 1).
(e) The plane of vectors (b1, b2, b3) that satisfy b3 − b2 + 3b1 = 0.

2. Which of the following are subspaces of R∞?

(a) All decreasing sequences: xj+1 ≤ xj for each j .
(b) All arithmetic progressions: xj+1 − xj is the same for all j .
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Exercises

Exercises 6.
1. Let P be the plane in 3-space with equation x + 2y + z = 6. What is the equation of the

plane P0 through the origin parallel to P? Are P and P0 subspaces of R3?

2. Which of the following descriptions are correct? The solutions x of

Ax =

[
1 1 1
1 0 2

]x1

x2

x3

 =

[
0
0

]

form

(a) a plane.
(b) a line.
(c) a point.
(d) a subspace.
(e) the nullspace of A.
(f) the column space of A.
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Exercises

Exercises 7.
1. Show that the set of nonsingular 2 by 2 matrices is not a vector space. Show also that the

set of singular 2 by 2 matrices is not a vector space.

2. The matrix A =

[
2 −2
2 −2

]
is a “vector” in the space M of all 2 by 2 matrices. Write the

zero vector in this space, the vector 1
2
A, and the vector −A. What matrices are in the

smallest subspace containing A?

3. If A is any 8 by 8 invertible matrix, then its column space is . Why?

4. Why is not R2 a subspace of R3?

5. If the 9 by 12 system Ax = b is solvable for every b, then C(A) = .
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Solving Ax = 0 and Ax = b

Consider a system of m linear equations with n unknowns

Ax = b. (1)

When b = 0, it is called homogeneous system; otherwise
nonhomogeneous.

The system
Ax = 0 (2)

is called the homogeneous system associated with (1). The above system
always has a solution 0 (the zero column vector), called zero or trivial
solutions.
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General Solution of Homogeneous System

The fundamental relationship between the systems (1) and (2) follows :

Theorem 8.

Suppse u is a particular solution of the nonhomogeneous system (1) and
supposed W is the general solution of the associated homogeneous system
(2). Then

u + W = {u + w : w ∈W }

is the general solution of the non-homogeneous system (1).

We emphasize that the above theorem is of theoretical interest and does
not help us to obtain explicit solutions of the system (1). But by the
method of (Gaussian) elimination, the general solution of the
non-homogeneous system can be found.
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Echelon Form

Let us consider the system Ax = b. If we apply Gauss elimination
procedure, we get an upper triangular matrix U, but the pivots are not
necessarily on the main diagonal. The important thing is that the nonzero
entries are confined to a “staircase pattern,” or echelon form. We can
summarize the entries of “echelon form” matrix.

1. The nonzero rows come first - otherwise there would have been row
exchanges - and the pivots are the first nonzero entries in those rows.

2. Below each pivot is a column of zeros, obtained by elimination.

3. Each pivot lies to the right of the pivot in the row above; this
produces the staircase pattern.
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Echelon Form

A matrix that has undergone Gaussian elimination is said to be in row
echelon form or, more properly, “reduced echelon form” or
“row-reduced echelon form”. Such a matrix has the following
characteristics :

1. All zero rows are at the bottom of the matrix.

2. The leading entry of each nonzero row after the first occurs to
the right of the leading entry of the previous row.

3. The leading entry in any nonzero row is 1.

4. All entries in the column above and below a leading 1 are zero.

Echelon Form (ef): The matrix U obtained by the Gaussian elimination is
called the echelon form matrix of A.
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Row Reduced Echelon Form

In many texts the elimination process does not stop at U, but continues
until the matrix is in a still simpler “row-reduced echelon form.” The
difference is that all pivots are normalized to +1, by dividing each row by
a constant, and zeros are produced not only below but also above every
pivot.

The row reduced echelon form (rref): The row reduced form of A is the
matrix obtained from U by

1. Dividing each row by its pivot.

2. With respect to each pivot, produce (by elimination) zeros above the
pivots (column wise).

The echelon form does, however, have some theorectical importance as a
“canonical form” for A: Regardless of the choice of elementary operations,
including row exchanges and row divisions, the final row-reduced echelon
form of A is always the same.
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Example

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

→
1 3 3 2

0 0 3 3
0 0 6 6



→ U = ef (A) =

1 3 3 2
0 0 3 3
0 0 0 0



→ R = rref (A) =

1 3 0 −1
0 0 1 1
0 0 0 0

.

What is L in this case? Size of matrix L? Is PA = LU valid?
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Pivot / Free Variables

Let
Ax = b ⇐⇒ Ux = c ⇐⇒ Rx = d .

Then
Ax = 0 ⇐⇒ Ux = 0 ⇐⇒ Rx = 0.

So,
N(A) = N(U) = N(R).

How to find N(R) ?

1. Pivot variable: Variable corresponds to columns with pivots

2. Free variable: Variables other than pivot variables.

3. Express pivot variables in terms of free variables.

4. Write the solution in terms of the free variables.

5. Obtain r special solutions by assigning one free variable 1 and other free variables 0.

6. The general solution is the linear combination of special solutions.

Theorem 9.

If n > m, then Ax = 0 has infinitely many solutions.
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Example

R = rref (A) =

1 3 0 −1
0 0 1 1
0 0 0 0

. Let x =


x1

x2

x3

x4

.

Free variables: x2 and x4.

Pivot variables: x1 and x3.

Rx = 0 =⇒

{
x1 + 3x2 − x4 = 0

x3 + x4 = 0
=⇒

{
x1 = −3x2 + x4

x3 = −x4

.

x =


−3x2 + x4

x2

−x4

x4

 = x2


−3
1
0
0

 + x4


1
0
−1
0

.
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All solutions of Ax = 0.

A good way to find all solutions to Ax = 0 is

1. After elimination reaches Ux = 0, identify the basis and free variables.

2. Give one free variable the value one, set the other free variables to
zero, and solve Ux = 0 for the basic variables.

3. Every free variable produces its own solution by step 2, and the
combinations of those solutions form the nullspace - the space of all
solutions to Ax = 0.

Suppose we start with a matrix that has more columns than rows, n > m
(fat matrix). Then, since there can be at most m pivots (there are not
rows enough to hold any more), there must be at least n−m free variables.
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All solutions of Ax = 0.

There will be even more free variables if some rows of U happen to reduce
to zero, but no matter what, at least one of the variables must be free.
This variable can be assigned as arbitrary value, leading to the following
conclusion: If a homogeneous system Ax = 0 has more unknowns than
equations (n > m, fat matrix), it has a nontrivial solution: There is a
solution x other than the trivial solution x = 0. The nullspace is a
subspace of the same “dimension” as the number of free variables. The
dimension of a subspace, is a count of the degrees of freedom.

The non-homogeneous case, b 6= 0, is quite different. We return to the
original example Ax = b, and apply to both sides of the equation the
operations that led from A to U. The result is an upper triangular system
Ux = c :  1 3 3 2

0 0 3 1
0 0 0 0




u
v
w
y

 =

 b1

b2 − 2b1

b3 − 2b2 + 5b1

 .
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All solutions of Ax = 0.

The vector c on the right side, which appeared after the elimination steps,
is just L−1b as in the previous chapter.

It is not clear that these equations have a solution. The third equation is
very much in doubt. Its left side is zero, and the equations are
inconsistent unless b3 − 2b2 + 5b1 = 0. In other words, the set of
attainable vectors b is not the whole of three-dimensional space.

Even though there are more unknowns than equations, there may be no
solution. We know, another way of considering the same question: Ax = b
can be solved iff b lies in the column space of A. This subspace is spanned
by the four columns of A (not of U!): 1

2
−1

 ,

 3
6
−3

 ,

 3
9
3

 ,

 2
5
0

 .
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All solutions of Ax = 0.

Even though there are four vectors, their combinations only fill out a plane
in three-dimensional space. The second column is three times the first,
and the fourth column equals the first plus some fraction of the third.
(Note that these dependent columns, the second and fourth, are exactly
the ones without pivots.)

The column space can now be described in two completely different ways.
On the one hand, it is the plane generated by columns 1 and 3; the other
columns lie in that plane, and contribute nothing new.

Equivalently, it is the plane composed of all poinits (b1, b2, b3) that satisfy
b3 + 2b2 + 5b1 = 0; this is the constraint that must be imposed if the
system is to be solvable. Every column satisfies this constraint, so it is
forced on b. Geometrically, we shall see that the vector (5,−2, 1) is
perpendicular to each column.
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All solutions of Ax = 0.

Every solution to Ax = b is the sum of one particular solution and a
solution to Ax = 0 :

xgeneral = xparticular + xhomogeneous.

The homogeneous part comes from the nullspace. The particular solution
comes from solving the equation with all free variables set to zero.

That is the only new part, since the nullspace is already computed. When
you multiply the equation in the box by A, you get

Axgeneral = b + 0.
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All solutions of Ax = 0.

Geometrically, the general solutions again fill a two-dimensional surface -
but it is not a subspace. It does not contain the origin. It is parallel to the
nullspace we have before, but it is shifted by the particular solution. Thus
the computations included one new step:

1. Reduce Ax = b to Ux = c.

2. Set all free variables to zero and find a particular solution.

3. Set the right side to zero and give each free variable, in turn, the
value one. With the other free variables at zero, find a homogeneous
solution (a vector x in the nullspace).
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All solutions of Ax = 0.

Elimination reveals the number of pivots and the number of free variables.
If there are r pivots, there are r basic variables and n − r free variables.
That number r will be given a name - it is the rank of the matrix - and the
whole elimination process can be summarized: Suppose elimination
reduces Ax = b to Ux = c . Let there be r pivors; the last m− r rows of U
are zero. Then there is a solution only if the last m − r components of c
are also zero. If r = m, there is always a solution.

The general solution is the sum of a particular solution (with all free
variables zero) and a homogeneous solution (with the n − r free variables
as independent parameters). If r = n, there are no free variables and the
nullspace contains only x = 0. The number r is called the rank of the
matrix A.
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All solutions of Ax = 0.

Note the two extreme cases, when the rank is as large as possible:

1. If r = n, there are no free variables in x .

2. If r = m, there are no zero rows in U.

With r = n the nullspace contains only x = 0.

The only solution is xparticular.

With r = m there are no constraints on b, the column space is all of Rm,
and for every right-hand side the equation can be solved.
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How to solve Ax = b or Ux = c

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

, x =


x1

x2

x3

x4

 and b =

b1

b2

b3

.

Ux = c =⇒

1 3 3 2
0 0 3 3
0 0 0 0



x1

x2

x3

x4

 =

 b1

b2 − 2b1

b3 − 2b2 + 5b1

.

Clearly, the above system is solvable only if b3 − 2b2 + 5b1 = 0.

Put x2 = 0 and x4 = 0. Then solution xp =


3b1 − b2

0
(b2 − 2b1)/3

0

 .
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How to solve Rx = d?

R =

1 3 0 −1
0 0 1 1
0 0 0 0

, x =


x1

x2

x3

x4

 and d =

 3b1 − b2

(b2 − 2b1)/3
0

.

Then xp =


3b1 − b2

0
(b2 − 2b1)/3

0

.
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How to solve Ax = b?

A =

 1 3 3 2
2 6 9 7
−1 −3 3 4

, x =


x1

x2

x3

x4

 and b =

b1

b2

b3

.

Identify the pivot columns 1 and 3 and the free variables columns 2 and 4.
Corresponding variables are x2 and x4.

Substituting x2 = 0 = x4 (free variables = 0) =⇒{
x1 + 3x3 = b1

2x1 + 9x3 = b2

=⇒

{
x1 = 3b1 − b2

x3 = (b2 − 2b1)/3
.
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How to solve Ax = b?

If b =

 1
1
−3

, then particular solution of Ax = b is xp =


2
0
−1/3

0

.

All solutions :




2
0
−1/3

0

 + α


−3
1
0
0

 + β


1
0
−1
0

 : α, β ∈ R

.

This particular soln xp has all free variables zero with pivot variables takes
values from the first r entries of d (Rx = d).
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Exercises

Exercises 10.

Consider


x1 + 2x2 + 3x3 + 5x4 = b1

2x1 + 4x2 + 8x3 + 12x4 = b2

3x1 + 6x2 + 7x3 + 13x4 = b3

.

1. Find A,U = ef (A) and R = rref (A).

2. Under what conditions Ax = b has a solution.

3. Find C (A) and N(A).

4. Find xp if b =

 0
6
−6

.

5. Find all solutions of Ax = b for the above b.
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Exercises

Exercises 11.
1. Find the value of c that makes it possible to solve Ax = b, and solve it:

u + v + 2w = 2

2u + 3v − w = 5

3u + 4v + w = c.

2. Construct a system with more unknowns than equations, but no solution. Change the
right-hand side to zero and find all solutions.

3. Find R for each of these (block) matrices, and the special solutions:

A =

0 0 0
0 0 3
2 4 6

 B =
[
A A

]
C =

[
A A
A 0

]
.
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Exercises

Exercises 12.
1. Under what conditions on b1 and b2 (if any) does Ax = b have a solution?

A =

[
1 2 0 3
2 4 0 7

]
, b =

[
b1

b2

]
.

Find two vectors in the nullspace of A, and the complete solution to Ax = b.

2. Find the ranks of AB and AM (rank 1 matrix times rank 1 matrix):

A =

[
1 2
2 4

]
and B =

[
2 1 4
3 1.5 6

]
and M =

[
1 b
c bc

]
.

3. Every column of AB is a combination of the columns of A. Then the dimensions of the
column spaces give rank(AB) ≤ rank(A). Problem: Prove also that rank(AB) ≤ rank(B).
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Exercises

Exercises 13.
1. Find the column space and nullspace of A and the solution to Ax = b:

A =

2 4 6 4
2 5 7 6
2 3 5 2

 b =

b1

b2

b3

 =

4
3
5

 .
2. Find the complete solutions of

x + 3y + 3z = 1

2x + 6y + 9z = 5

−x − 3y + 3z = 5

and

1 3 1 2
2 6 4 8
0 0 2 4



x
y
z
t

 =

1
3
1

.
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Exercises

Exercises 14.
1. Give examples of matrices A for which the number of solutions to Ax = b is

(a) 0 or 1, depending on b.
(b) ∞, regardless of b.
(c) 0 or ∞, depending on b.
(d) 1, regardless of b.

2. Construct a 2 by 2 matrix whose nullspace equals its column space.

3. Show by example that these three statements are generally false:

(a) A and AT have the same nullspace.
(b) A and AT have the same free variables.
(c) If R is the reduced form rref (A), then RT is rref (AT ).

4. Construct a matrix whose column space contains (1, 1, 5) and (0, 3, 1) and whose
nullspace contains (1, 1, 2).
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Linear Dependent Set

For any vectors u1, u2, . . . , un, we have that 0u1 + 0u2 + · · ·+ 0un = 0.
This is called the trivial representation of 0 as a linear combination of
u1, u2, . . . , un.

This motivates a definition of “linear dependence”. For a set to be
linearly dependent, there must exist a non-trivial representation of 0 as a
linear combination of vectors in the set.

Definition 15.

A subset S of a vector space V is called linearly dependent if there exist a
finite number of distinct vectors v1, v2, . . . , vn in S and scalars
a1, a2, . . . , an, not all zero, such that

a1v1 + a2v2 + · · ·+ anvn = 0.

Note that the zero on the right is the zero vector, not the number zero.
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Linear Dependent Set

Any set containing the zero vector is linearly dependent.

If m > n, then a set of m vectors in Rn is dependent.

A subset S of a vector space V is then said to be linearly independent if
it is not linearly dependent.

In other words, a set is linearly independent if the only
representations of 0 as a linear combination of its vectors are trivial
representations.
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Linear Dependent Set

More generally, let V be a vector space over R, and let {vi : i ∈ I} be a
family of elements of V .

The family is linearly dependent over R if there exists a family
{aj : j ∈ J} of elements of R, not all zero, such that

∑
j∈J ajvj = 0, where

the index set J is a nonempty, finite subset of I .

A set {vi : i ∈ I} of elements of V is linearly independent if the
corresponding family {vi : i ∈ I} is not linearly dependent.
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Exercises

Exercises 16.
1. Are the vectors [1, 2, 1]T , [3, 1, 1]T , [5, 5, 3]T ∈ R3 linearly independent?

α1

1
2
1

+ α2

3
1
1

+ α3

5
5
3

 =

0
0
0


How does row-echelon form / Gaussian Elimination help?1 3 5

2 1 5
1 1 3

→
1 3 5

0 −5 −5
0 0 0

→
1 0 2

0 1 1
0 0 0


2. Check the independence of the columns of the matrices :

A =

 1 3 3 2
2 6 9 5
−1 −3 3 0

 , B =

3 4 2
0 1 5
0 0 2

 .
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Span of a set of vectors

Linear independence/dependence of v1, . . . , vn are equivalent to
having ’only trivial’ (or) ’non-trivial’ solutions for the homogeneous
system Aα = 0, where A = [v1 . . . vn], α = [α1, . . . , αn]T .

Question: Then what about N(A)?

In terms of pivots: The r non-zero rows of an echelon matrix U and a
reduced matrix R are linearly independent. So are the r columns that
contains the pivots.

Question: Is it possible that R3 contains 4 linearly independent
vectors? Can all columns of 4× 6 matrix be linearly independent?

A set of n vectors in Rm must be linearly dependent if n > m.
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Spanning a Subspace

Definition 17.

A set of vectors S spans a subspace W if W = 〈S〉 ; that is, if every
element of W is a linear combination of elements of S .

In other words, we call the subspace W spanned by a set S if all
possible linear combinations produce the space W .

If S spans a vector space V (we denote Sp(S) = V ), then every set
containing S is also a spanning set of V .
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Basis

Definition 18.

A set B of vectors in a vector space V is said to be a basis if B is linearly
independent and spans V .

From the definition of a basis B, every element of V can be written as
linear combination of elements of B, in one and only way.

Definition 19.

The number of elements of a basis B of a vector space V is called the
dimension of V .

Example 20.

1. The coordinate vectors e1, e2, . . . , en coming from the identity matrix
spans Rn. Hence the dimension of Rn is n.

2. The vector space P(x) of all polynomials in x over R has the (infinite)
subset 1, x , x2, . . . as a basis, so P(x) has infinite dimension.
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Maximal linearly independent set / Minimal spanning set

In a subspace of dimension k , no set of more than k vectors can be
independent, and no set of fewer than k vectors can span the space.

Any linearly independent set in V can be extended to a basis, by
adding more vectors if necessary.

Any spanning set in V can be reduced to a basis, by discarding
vectors if necessary.

Hence basis is a maximal linearly independent set, or a minimal
spanning set.
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Exercises

Exercises 21.

1. Prove that if a = 0, d = 0, or f = 0 (3 cases), the columns of U are dependent:

U =

a b c
0 d e
0 0 f

 .
2. If a, d , f in Problem 1 are all nonzero, show that the only solution to Ux = 0 is x = 0.

Then U has independent columns.

3. Suppose v1, v2, v3, v4 are vectors in R3.

(a) These four vectors are dependent because .
(b) The two vectors v1 and v2 will be dependent if .
(c) The vectors v1 and (0, 0, 0) are dependent because .

4. If w1,w2,w3 are independent vectors, show that the sums v1 = w2 + w3, v2 = w1 + w3,
and v3 = w1 + w2 are independent. (Write c1v1 + c2v2 + c3v3 = 0 in terms of the w ’s.
Find and solve equations for the c’s.)
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Exercises

Exercises 22.
1. Decide whether or not the following vectors are linearly independent, by solving

c1v1 + c2v2 + c3v3 + c4v4 = 0:

v1 =


1
1
0
0

 , v2 =


1
0
1
0

 , v3 =


0
0
1
1

 , v4 =


0
1
0
1

 .
Decide also if they span R4, by trying to solve c1v1 + · · ·+ c4v4 = (0, 0, 0, 1).

2. Suppose the vectors to be tested for independence are placed into the rows instead of the
columns of A. How does the elimination process from A to U decide for or against
independence?

3. Describe the subspace of R3 (is it a line or a plane or R3?) spanned by

(a) the two vectors (1, 1,−1) and (−1,−1, 1).
(b) the three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0).
(c) the columns of a 3 by 5 echelon matrix with 2 pivots.
(d) all vectors with positive components.
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Exercises

Exercises 23.
1. If v1, . . . , vn are linearly independent, the space they span has dimension . These

vectors are a for that space. If the vectors are the columns of an m by n matrix,
then m is than n.

2. Find three different bases for the column space of U above. Then find two different bases
for the row space of U.

3. Suppose V is known to have dimension k. Prove that

(a) any k independent vectors in V form a basis;
(b) any k vectors that span V form a basis.

In other words, if the number of vectors is known to be correct, either of the two
properties of a basis implies the other.

4. By locating the pivots, find a basis for the column space of

U =


0 5 4 3
0 0 2 1
0 0 0 0
0 0 0 0

 .
Express each column that is not in the basis as a combination of the basic columns. Find
also a matrix A with this echelon form U, but a different column space.
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Exercises

Exercises 24.
1. True or false (give a good reason)?

(a)) If the columns of a matrix are dependent, so are the rows.
(b)) The column space of a 2 by 2 matrix is the same as its row space.
(c)) The column space of a 2 by 2 matrix has the same dimension as its

row space.
(d)) The columns of a matrix are a basis for the column space.

2. Which of the following are bases for R3?

(a) (1, 2, 0) and (0, 1,−1).
(b) (1, 1,−1), (2, 3, 4), (4, 1,−1), (0, 1,−1).
(c) (1, 2, 2), (−1, 2, 1), (0, 8, 0).
(d) (1, 2, 2), (−1, 2, 1), (0, 8, 6).

3. Find a basis for the space of functions that satisfy

(a) dy
dx − 2y = 0.

(b) dy
dx −

y
x = 0.
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